
Hardware and Software
Requirements List
For the book "Hands-On System Programming with Linux", Kaiwan N Billimoria, Packt
(2018).

The complete source code for this book - Hands-On System Programming with Linux, Kaiwan N
Billimoria, Packt, is available on it’s GitHub repository. You can download and work on it by cloning the
git tree like so:

git clone

 https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

(type the above in one line please).

For the best experience in trying out the provided sample source code in this book (and writing your own
along similar lines), we recommend the following hardware and software. Following that, we list a few
'required' and 'optional' software packages (or utilities).

Hardware
You will require a modern desktop PC or laptop; Ubuntu Desktop specifies the following as
"Recommended system requirements" for installation and usage of the distribution:

● 2 GHz dual core processor or better
● RAM

○ running on physical host: 2 GB or more system memory
○ running as a guest VM (Virtual Machine): the host system should have at least 4 GB

RAM (the more, the better and smoother the experience)
● 25 GB of free hard drive space
● Either a DVD drive or a USB port for the installer media
● Internet access is definitely helpful.

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Running Linux as a Guest VM
A practical, convenient alternative to using a native Linux system: one can install and use the Linux
distribution as a guest OS on a virtual machine (VM or guest). We recommend using Oracle VirtualBox
5.x (or whichever is the latest stable version available). The host system should be either MS Windows 7
or later (practically, Win 7 Pro or Win 10 is preferred), or a recent Linux distribution.

Oracle VirtualBox download link: https://www.virtualbox.org/wiki/Downloads

Again, Oracle VirtualBox is considered OSS (Open Source Software) and is licensed under the GPLv2
(same as the Linux kernel); it too is free.

VirtualBox Documentation: https://www.virtualbox.org/wiki/End-user_documentation

Software
We recommend the reader use one of the following Linux distributions (can always be installed as a guest
OS on a Windows or Linux host system, as mentioned above):

● Ubuntu 18.04 LTS Desktop
● The Ubuntu 16.04 LTS Desktop is a good choice too (it has LTS - Long Term Support - as well),

and everything should work

Ubuntu Desktop download link: https://www.ubuntu.com/download/desktop

● Fedora 27 or 28 (Workstation)

Download link: https://getfedora.org/en_GB/workstation/download/

Note:

● These distributions are, in their default form, OSS and non-proprietary, and free to use as an
end-user

● Though our aim is to be Linux 'distro' neutral, the code has only been (lightly) tested on Ubuntu
18.04 LTS and Fedora 27/28

● Most of the code output we have shown in the book is off an Ubuntu Linux guest (due to
Ubuntu’s popularity); the reader should realize that due to (usually minor) distro - and even
within the sam distro, differing versions - differences, the output may not perfectly match what
you see on your Linux system.

Software Packages
There are two categories: required and optional.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/End-user_documentation
https://www.ubuntu.com/download/desktop
https://getfedora.org/en_GB/workstation/download/

Required Packages
The packages that get installed by default when one uses the typical Linux desktop distribution (like any
recent Ubuntu or Fedora Linux) will include the minimal set required by a systems programmer: the
native toolchain, which includes the gcc compiler (along with headers) along with the make and git
utility/packages.

On occasion (for example, in Ch 4), we build a 32-bit binary on a 64-bit (x86_64) system. To do so
successfully requires the appropriate toolchain support.

● On Ubuntu Linux, please install the required package like this:

sudo apt install gcc-multilib

In Ch 8, Process Capabilities, we show an example of file capability bits embedded in a binary
executable called dumpcap(1) . Seeing this for yourself requires dumpcap(1) installed, which in turn
requires the wireshark package to be installed and configured correctly.

● Install the wireshark package on Ubuntu with:

sudo apt install wireshark-common

During installation, in response to a question on whether you want wireshark to capture packets

as non-superuser, select "Yes". Else (if perhaps already installed), you can reconfigure wireshark
like so:

sudo dpkg-reconfigure wireshark-common

selecting "Yes" to this question. (Only now will the dumpcap(1) binary will get embedded
with

the capability bits we expect and demonstrate in the chapter).

In Ch 9, Process Execution

● We require the getcap(1) and setcap(1) utilities; install them on Ubuntu with:

sudo apt install libcap2-bin

● One of the exercises (again in Ch 9) requires the Poppler package (PDF utils) to be installed; it
can be installed as follows:

○ On Ubuntu: sudo apt install poppler-utils
○ On Fedora: sudo dnf install poppler-utils-<version#>

A tip: above, for the Fedora case: for getting the version number, just type the above command

and after typing poppler-utils- press the [Tab] key twice; it will auto-complete providing

a list of choices; choose the latest version and press [Enter].

● Clang compiler frontend

LLVM/Clang is an open source compiler for 'C'. We do use the clang compiler, notably in Chapter 5,
Debugging Tools for Memory Issues especially for using the "sanitizer" compiler- instrumentation toolset.
It remains useful throughout the book (and indeed is used in many of our Makefile s), thus installing
clang on your Linux development system would be a good idea!

It is not completely essential and one can stick with familiar gcc too - provided one is willing to edit the
Makefile(s) to switch back to gcc wherever required! Installing clang on the Ubuntu 18.04 LTS desktop
is easy:

sudo apt install clang

Clang documentation can be found here: https://clang.llvm.org/docs/index.html .

● llvm-symbolizer: this tool requires to be installed as well (when used appropriately, it provides
useful debug information of the form filename:line#). Install it on Ubuntu Linux with:

sudo apt install llvm-symbolizer

Optional Packages
The book, at times, mentions that running a program on another CPU architecture - typically ARM -
might be a useful exercise; it's not considered mandatory of course. If you wish to try (interesting!) stuff
like this, please read on, else just skip this section.

One way to try things on an ARM machine is to actually do so, which implies you have a physical
ARM-based single board computer (as an example, the Raspberry Pi is very popular).

Qemu
Often, an easier way to just try things out, is to have an ARM/Linux system emulated - this alleviates the
need for hardware! To do so, we recommend using the superb Qemu project (https://www.qemu.org/) .

It's much easier though, to just install the required qemu packages:

On Ubuntu: sudo apt-get install qemu-system-arm

Fedora: sudo dnf install qemu-system-arm-<version#> (same Tip as previously
mentioned applies).

Cross Compiler
If you intend to write a 'C' program that is compiled on an x86_64 system but runs on something else
(say, an ARM-32), then you require a cross compiler / toolchain installed.

On Ubuntu, install it with:

sudo apt install gcc-arm-linux-gnueabi binutils-arm-linux-gnueabi

On Fedora, install it with:

https://clang.llvm.org/docs/index.html
https://www.qemu.org/

sudo dnf install arm-none-eabi-binutils-cs-1\:2.28-3.fc27.x86_64

 arm-none-eabi-gcc-cs-1\:7.1.0-5.fc27.x86_64

The above example was for Fedora 27 particularly; in general, the syntax is:

sudo dnf install arm-none-eabi-binutils-cs-<version#>

 arm-none- eabi-gcc-cs-<version-#>

Tip: Above, for the Fedora case: for getting the version number, just type the above command and after
typing arm-none-eabi-binutils- press the [Tab] key twice; it will auto-complete providing a
list of choices; choose the latest version and press [Enter]. (Same goes for the gcc package).

Toolchain Resources

In general, a good resource on toolchains: https://elinux.org/Toolchains.

A 'wiki' page (from the SEALS project I maintain) with instructions on downloading and installing the
latest ARM Linaro toolchain is available here:

https://github.com/kaiwan/seals/wiki/HOWTO-Install-required-packages-on-the-Host-for-SEALS.

Miscellaneous
Also mentioned at times in the book, your author has created and maintains a small project on GitHub -
SEALS (Simple Embedded ARM Linux System): https://github.com/kaiwan/seals/.

SEALS is a very simple, "skeleton" Linux. It uses a bash script that internally cross-compiles a Linux
kernel for ARM, creates and initializes a simple root filesystem, and then calls upon Qemu to emulate and
run an ARM platform (the Versatile Express CA-9); the useful thing is, the script builds the target kernel,
root filesystem, the root filesystem image file, and sets things up for boot. It even has a simple GUI (or
console) front-end, to make configuration a bit simpler for the end-user. Clone it and give it a try... we
defintely recommend you have a look at its Wiki section pages for help.

Ubuntu: the package libncurses5-dev is required is you intend to configure the kernel via make
menuconfig ; we do not require to do so by default. If required:

sudo apt install libncurses5-dev

In a few places in the book, we try and illustrate the true situation better by making use of some pretty
useful and powerful tools; one of them is perf(1) for (CPU) profiling. Installing perf on Ubuntu is
simple:

sudo apt install linux-tools-$(uname -r)

Another superb tool for tracing is the powerful LTTng (Linux tracing Toolkit next generation) toolset. In

https://elinux.org/Toolchains
https://github.com/kaiwan/seals/wiki/HOWTO-Install-required-packages-on-the-Host-for-SEALS
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/wiki

order to learn how to install and use it, we refer you to its (very good) documentation:
https://lttng.org/docs/

Ubuntu: the System Monitor GUI application is first used in Ch 14, Multithreading Part I - Essentials to
demonstrate CPU usage for a matrix multiplication done with and without threads (single vs
multithreaded). If not already installed, you can install it with:

sudo apt install gnome-system-monitor

Ch 17, CPU Scheduling briefly demonstrates usage of the chrt(1) and taskset(1) utilities. Both
the chrt utility (show and set process scheduling policy and priority) and the taskset utility (show and set
process CPU affinity) can be installed by installing the util-linux package on both Ubuntu and
Fedora.

The Source Code for this Book
The complete source code for this book - "Hands-On System Programming with Linux", Kaiwan N
Billimoria, Packt - is available on GitHub; you can download and work on it by cloning the git tree like
so:

git clone

 https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

(type the above in one line please).

The source code is organized chapter-wise; each chapter is represented as a directory, f.e. ch8/ has the
source code for Chapter 8. The root of the source tree has some code that is common to all chapters -
common.c and common.h .

For efficient code browsing, you could always index the codebase with ctags and/or cscope. For example,
for ctags:

ctags -R

in the root of the source tree is sufficient.

To build the code, for say, Ch 8 (the git clone is required only once):

git clone https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

cd ch8

https://lttng.org/docs/
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

make

[...]

Enjoy.

[End doc]

