Machine Learning in Python
Essential Techniques for Predictive Analysis
Price | $25.97 - $36.66
|
Rating | |
Author | Michael Bowles |
Publisher | Wiley |
Published | 2015 |
Pages | 360 |
Language | English |
Format | Paper book / ebook (PDF) |
ISBN-10 | 1118961749 |
ISBN-13 | 9781118961742 |
Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions.
Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language.
- Michael Bowles
4 5 53
Similar Books
Machine Learning in the Oil and Gas Industry
by Yogendra Narayan Pandey, Ayush Rastogi, Sribharath Kainkaryam, Srimoyee Bhattacharya, Luigi Saputelli
Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good c...
Price: $29.86 | Publisher: Apress | Release: 2020
Machine Learning in Java, 2nd Edition
by AshishSingh Bhatia, Bostjan Kaluza
As the amount of data in the world continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognit...
Price: $39.99 | Publisher: Packt Publishing | Release: 2018
Mastering Azure Machine Learning, 2nd Edition
by Christoph Korner, Marcel Alsdorf
Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logg...
Price: $41.99 | Publisher: Packt Publishing | Release: 2022
by Joshua Newnham
Core ML is a popular framework by Apple, with APIs designed to support various machine learning tasks. It allows you to train your machine learning models and then integrate them into your iOS apps.Machine Learning with Core ML is a fun and practical guide that not only demystifies Core ML but also sheds light on machine learning. In this...
Price: $49.99 | Publisher: Packt Publishing | Release: 2018
Python Machine Learning, 3rd Edition
by Sebastian Raschka, Vahid Mirjalili
Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems.Packed with clear explanations, visualizations, and working examples, the book covers all the...
Price: $35.99 | Publisher: Packt Publishing | Release: 2019
Mastering Machine Learning with Python in Six Steps
by Manohar Swamynathan
Master machine learning with Python in six steps and explore fundamental to advanced topics, all designed to make you a worthy practitioner. This book's approach is based on the "Six degrees of separation" theory, which states that everyone and everything is a maximum of six steps away. Mastering Machine Learning wi...
Price: $37.64 | Publisher: Apress | Release: 2017
by Nick Pentreath
Apache Spark is a framework for distributed computing that is designed from the ground up to be optimized for low latency tasks and in-memory data storage. It is one of the few frameworks for parallel computing that combines speed, scalability, in-memory processing, and fault tolerance with ease of programming and a flexible, expressive, ...
Price: $34.99 | Publisher: Packt Publishing | Release: 2015
Machine Learning with PyTorch and Scikit-Learn
by Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems.Packed with clear explanations, visualizations, and examples, the book covers all the...
Price: $40.00 | Publisher: Packt Publishing | Release: 2022