Machine Learning Projects for Mobile Applications
Build Android and iOS applications using TensorFlow Lite and Core ML
Price | $39.99
|
Rating | |
Author | Karthikeyan NG |
Publisher | Packt Publishing |
Published | 2018 |
Pages | 246 |
Language | English |
Format | Paper book / ebook (PDF) |
ISBN-10 | 1788994590 |
ISBN-13 | 9781788994590 |
Machine learning is a technique that focuses on developing computer programs that can be modified when exposed to new data. We can make use of it for our mobile applications and this book will show you how to do so.
The book starts with the basics of machine learning concepts for mobile applications and how to get well equipped for further tasks. You will start by developing an app to classify age and gender using Core ML and Tensorflow Lite. You will explore neural style transfer and get familiar with how deep CNNs work. We will also take a closer look at Google's ML Kit for the Firebase SDK for mobile applications. You will learn how to detect handwritten text on mobile. You will also learn how to create your own Snapchat filter by making use of facial attributes and OpenCV. You will learn how to train your own food classification model on your mobile; all of this will be done with the help of deep learning techniques. Lastly, you will build an image classifier on your mobile, compare its performance, and analyze the results on both mobile and cloud using TensorFlow Lite with an RCNN.
By the end of this book, you will not only have mastered the concepts of machine learning but also learned how to resolve problems faced while building powerful apps on mobiles using TensorFlow Lite, Caffe2, and Core ML.
- Karthikeyan NG
1 5 1
Similar Books
Machine Learning Projects for .NET Developers
by Mathias Brandewinder
Machine Learning Projects for .NET Developers shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You'll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language...
Price: $49.99 | Publisher: Apress | Release: 2015
by Xuanyi Chew
Go is the perfect language for machine learning; it helps to clearly describe complex algorithms, and also helps developers to understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but...
Price: $44.88 | Publisher: Packt Publishing | Release: 2018
by Yoon Hyup Hwang
Machine learning is applied in almost all kinds of real-world surroundings and industries, right from medicine to advertising; from finance to scientifc research. This book will help you learn how to choose a model for your problem, how to evaluate the performance of your models, and how you can use C# to build machine learning models for...
Price: $41.63 | Publisher: Packt Publishing | Release: 2018
by Nick Pentreath
Apache Spark is a framework for distributed computing that is designed from the ground up to be optimized for low latency tasks and in-memory data storage. It is one of the few frameworks for parallel computing that combines speed, scalability, in-memory processing, and fault tolerance with ease of programming and a flexible, expressive, ...
Price: $34.99 | Publisher: Packt Publishing | Release: 2015
TensorFlow Machine Learning Projects
by Ankit Jain, Armando Fandango, Amita Kapoor
TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits - simplicity, efficiency, and flexibility - of using TensorFlow in various real-world projects. With the help of this book, you'll not only learn how to build advanced projects using different...
Price: $34.99 | Publisher: Packt Publishing | Release: 2018
Mastering Azure Machine Learning, 2nd Edition
by Christoph Korner, Marcel Alsdorf
Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logg...
Price: $41.99 | Publisher: Packt Publishing | Release: 2022
Machine Learning on Kubernetes
by Faisal Masood, Ross Brigoli
MLOps is an emerging field that aims to bring repeatability, automation, and standardization of the software engineering domain to data science and machine learning engineering. By implementing MLOps with Kubernetes, data scientists, IT professionals, and data engineers can collaborate and build machine learning solutions that deliver bus...
Price: $44.99 | Publisher: Packt Publishing | Release: 2022
Quantum Machine Learning: An Applied Approach
by Santanu Ganguly
Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research.The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learnin...
Price: $48.75 | Publisher: Apress | Release: 2021