Practical Java Machine Learning
Projects with Google Cloud Platform and Amazon Web Services
Price | $28.17 - $45.27
|
Rating | |
Author | Mark Wickham |
Publisher | Apress |
Published | 2018 |
Pages | 392 |
Language | English |
Format | Paper book / ebook (PDF) |
ISBN-10 | 1484239504 |
ISBN-13 | 9781484239506 |
Build machine learning (ML) solutions for Java development. This book shows you that when designing ML apps, data is the key driver and must be considered throughout all phases of the project life cycle. Practical Java Machine Learning helps you understand the importance of data and how to organize it for use within your ML project. You will be introduced to tools which can help you identify and manage your data including JSON, visualization, NoSQL databases, and cloud platforms including Google Cloud Platform and Amazon Web Services.
Practical Java Machine Learning includes multiple projects, with particular focus on the Android mobile platform and features such as sensors, camera, and connectivity, each of which produce data that can power unique machine learning solutions. You will learn to build a variety of applications that demonstrate the capabilities of the Google Cloud Platform machine learning API, including data visualization for Java; document classification using the Weka ML environment; audio file classification for Android using ML with spectrogram voice data; and machine learning using device sensor data.
After reading this book, you will come away with case study examples and projects that you can take away as templates for re-use and exploration for your own machine learning programming projects with Java.
Identify, organize, and architect the data required for ML projects; Deploy ML solutions in conjunction with cloud providers such as Google and Amazon; Determine which algorithm is the most appropriate for a specific ML problem; Implement Java ML solutions on Android mobile devices; Create Java ML solutions to work with sensor data; Build Java streaming based solutions.
- Mark Wickham (2 books)
Similar Books
by Nick Pentreath
Apache Spark is a framework for distributed computing that is designed from the ground up to be optimized for low latency tasks and in-memory data storage. It is one of the few frameworks for parallel computing that combines speed, scalability, in-memory processing, and fault tolerance with ease of programming and a flexible, expressive, ...
Price: $34.99 | Publisher: Packt Publishing | Release: 2015
Mastering Azure Machine Learning, 2nd Edition
by Christoph Korner, Marcel Alsdorf
Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logg...
Price: $41.99 | Publisher: Packt Publishing | Release: 2022
Machine Learning for Streaming Data with Python
by Joos Korstanje
Streaming data is the new top technology to watch out for in the field of data science and machine learning. As business needs become more demanding, many use cases require real-time analysis as well as real-time machine learning. This book will help you to get up to speed with data analytics for streaming data and focus strongly on adapt...
Price: $44.99 | Publisher: Packt Publishing | Release: 2022
Machine Learning in Java, 2nd Edition
by AshishSingh Bhatia, Bostjan Kaluza
As the amount of data in the world continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognit...
Price: $39.99 | Publisher: Packt Publishing | Release: 2018
Hands-on Machine Learning with JavaScript
by Burak Kanber
In over 20 years of existence, JavaScript has been pushing beyond the boundaries of web evolution with proven existence on servers, embedded devices, Smart TVs, IoT, Smart Cars, and more. Today, with the added advantage of machine learning research and support for JS libraries, JavaScript makes your browsers smarter than ever with the abi...
Price: $44.99 | Publisher: Packt Publishing | Release: 2018
Practical Machine Learning for Computer Vision
by Valliappa Lakshmanan, Martin Görner, Ryan Gillard
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a gr...
Price: $59.54 | Publisher: O'Reilly Media | Release: 2021
Machine Learning on Kubernetes
by Faisal Masood, Ross Brigoli
MLOps is an emerging field that aims to bring repeatability, automation, and standardization of the software engineering domain to data science and machine learning engineering. By implementing MLOps with Kubernetes, data scientists, IT professionals, and data engineers can collaborate and build machine learning solutions that deliver bus...
Price: $44.99 | Publisher: Packt Publishing | Release: 2022
by Dino Esposito, Francesco Esposito
Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft's powerful ML....
Price: $34.99 | Publisher: Microsoft Press | Release: 2020